Imaging Plankton and Jellyfish in the Chesapeake

Hongsheng Bi

Chesapeake Biological Laboratory, Univ of MD, Solomons, MD, USA

Why do we need imaging system

- Traditional sampling gears
 - Different nets for different organisms

Source: http://www.gulfofmaine-census.org

Newer technologies

- Acoustics: backscatter
- Optical Plankton Counter

Source: http://www.gulfofmaine-census.org

Source: Canada Ocean network

Problems

Nets can not resolve fine scale distribution

- Acoustic and OPC no taxonomic information
 - Too many particulates< 5% are organisms

Other issues and imaging systems

Gelatinous zooplankton are fragile and hard to preserve

Chesapeakebay.net

www.vims.edu

Imaging systems

- Imaging systems for > two decades
 - Video Plankton Recorder (VPR):
 - scattered light: turbidity
 - small sampling volume: only small organisms
 - Underwater Video Profiler (UVP)
 - profiling
 - Shadowed Image Particle Profiling Evaluation Recorder (SIPPER)
 - Not available
 - In Situ Ichthyoplankton Imaging System (ISIIS)
 - Large sampling volume
 - Require fiber optic winch

Zooplankton Visualization System

Designed by Dr. Mark Benfield and tested in Chesapeake Bay

Zooplankton Visualization System

- 1. Red light
- 2. Shadowgraph imaging technique
- 3. 15 images per second
- 4. ~360L per minute
- 5. Pixel resolution 12 μm
- 6. From $50\mu m$ up to $\sim 3cm$
- 7. Two Lithium-ion battery: for ~6 hours deployment
- 8. Two internal hard drives: 500,000 images, 8 hours
- 9. Operating system in compact flash card

Bi et al. 2013 JPR

Images from the Gulf of Mexico

Deployments in Chesapeake Bay

- May, July, October 2011
- November 2012 (after the superstorm Sandy)
- May 2013

Fine scale spatial distribution: M. leidyi

M. leidyi

- 1. Temperature range
- 2. Salinity range
- 3. Vertical distribution
- 4. Horizontal distribution

Copepod patchiness

Sonar imaging system: sea nettle

Sonar imaging system: striped bass

Sonar imaging system: silverside

Acknowledgements

- Funds from Univ. of MD and Sea Grant
- Design of the system by Dr. Benfield
- CBL: Hao Yu, Ed Houde, Tom Miller
- NOAA: Michael Ford
- SERC: Denise Breitburg