

Integrated Water Management in Maryland

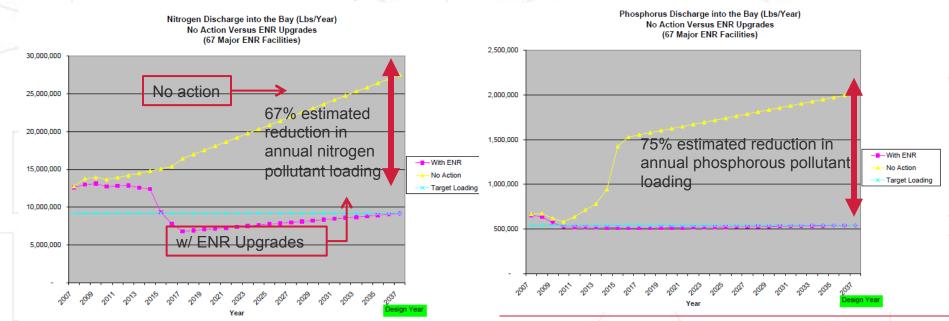
Anwer Hasan, Senior Vice President

Discussion Topics

- State initiatives for water management
 - Stormwater management
 - Agriculture runoff
 - Enhanced Nutrient Removal
- Local initiatives for water management
- Federal initiatives for water management
 - Combined Sewer Overflow Systems District of Columbia
 - Sanitary Sewer Overflow Systems Baltimore County
 - Sanitary Sewer Overflow Systems—Baltimore City
 - Lessons learned

Cold Spring Elementary School

Stormwater runoff biofiltration


Stormwater Management

- Environmental permits issued by the Maryland require jurisdictions to develop plans to meet U.S. Clean Water Act requirements
- The goal of these plans is to reduce phosphorous, nitrogen and sediment pollutants to the Chesapeake Bay
- To fund these plans, the State of Maryland in April 2012 passed legislation that required 9 Maryland counties and the City of Baltimore to establish a Watershed Protection and Restoration Program
 - Program includes stormwater fee and watershed protection/restoration fund
 - Collected money is placed in dedicated fund and used to address pollutant reduction and maintain stormwater systems

Enhanced Nutrient Removal

Chesapeake Bay Fund

- On May 26, 2004 the Chesapeake Bay Fund was signed into law
 - Created dedicated fund to upgrade Maryland's WWTPs (> 0.5 MGD capacity) to enhanced nutrient removal (ENR) technology
 - Plant effluent quality to 3 mg/l total nitrogen and 0. 3mg/l total phosphorous
- On March 20, 2012, flush tax increased to \$5/month
 - Additional funds used to upgrade the remaining wastewater treatment plants and funds stormwater and Agriculture runoff

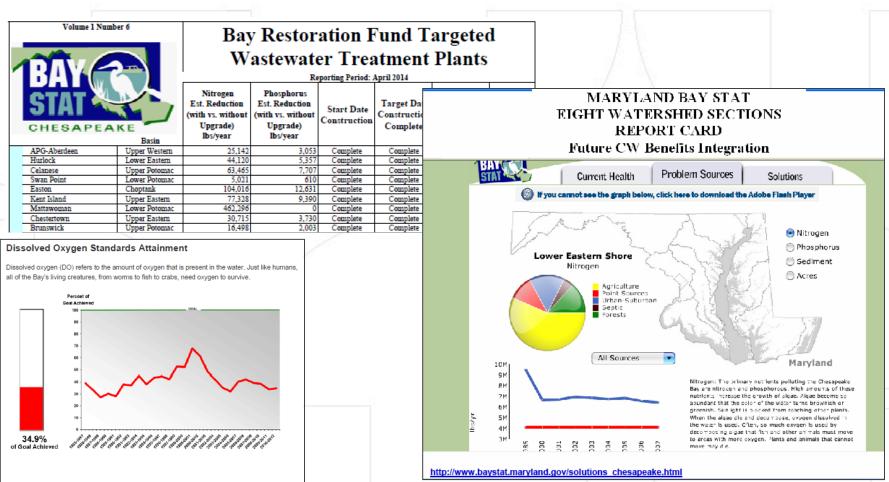
Enhanced Nutrient Removal

Chesapeake Bay Fund Accomplishments

ENR Upgrade Status	Major Plants (> 0.5 MGD Capacity)	Minor Plants (< 0.5 MGD Capacity)
Completed	31	2
In Construction	20	2
In Design	11	3
Planning Phase	4	3

Enhanced Nutrient Removal

BayStat


Status:

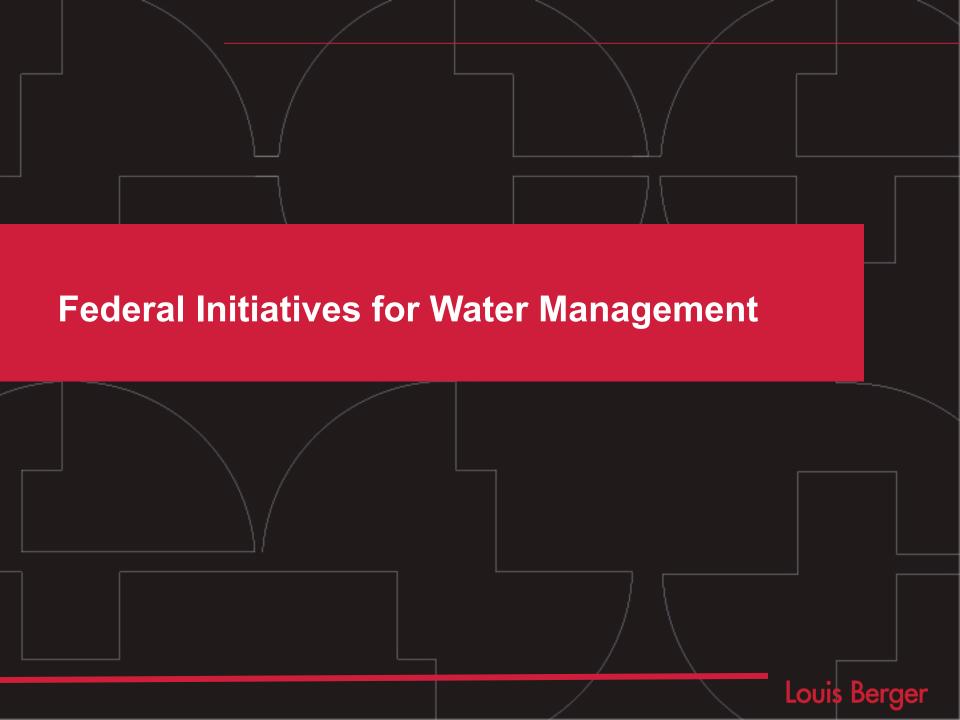
through 2011

Water quality data gathered between 2010 and 2012 indicate that 34.9 percent of the combined

volume of open-water, deep-water and deep-channel water of the Bay and its tidal tributaries met dissolved oxygen standards during the summer months. This is a slight increase from 34.1% in 2009

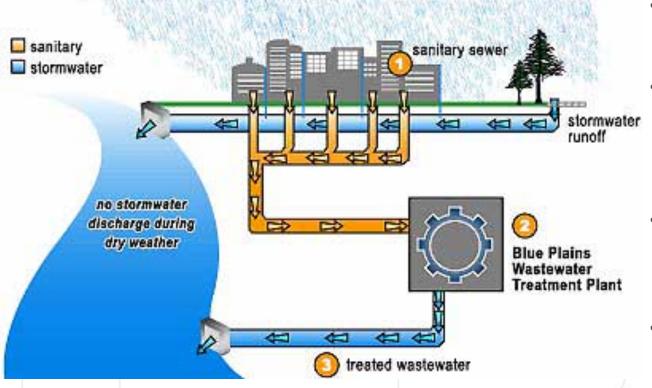
State developed BayStat to track and report the progress of the State's initiatives

Water Reuse


- In 2016 Howard County will begin providing from the Little Patuxent Water Reclamation Plant up to 5 MGD of treated wastewater to cool the National Security Agency's (NSA) computer center
 - Treated wastewater would normally discharge into the Little Patuxent River
 - Provides reliable water source for NSA
 - Up to \$2M in utility fee income for Howard County

Little Patuxent Water Reclamation Plant

Future site of NSA's High Performance Computing Center-2


District of Columbia Water and Sewer Authority

Combined Sewer Overflow Systems

District of Columbia

- Combined stormwater/ wastewater collection system
- Cost to construct separate collection systems is higher than treating the stormwater and wastewater
- All flow is treated at the Blue Plains Advanced Wastewater Treatment Plant
- No room for plant expansion

SEPARATE SANITARY & STORMWATER SEWER SYSTEMS

Combined Sewer Overflow Systems

- In December 2004 the U.S. Environmental Protection Agency approved DC Water's Long Term Control Plan to reduce CSOs
- Plan included construction of CSO storage tunnels
 - Tunnels store wet weather flow for treatment after the storm has passed

CSO Overflow Reduction of Recommended CSO Plan (Average Year)

Item	Anacostia River	Potomac River	Rock Creek	Total System	% Capture of Combined Sewage per CSO Policy
CSO Overflow Volume (mg/yr) No Phase I Controls	2,142	1,063	49	3,254	76%
With Phase I Controls Recommended Plan	1,485 54	953 79	52 5	2,490 138	82% 99%
% Reduction from No Phase I Controls Number of Overflows/yr	97.5%	92.5%	89.8%	95.8%	-
No Phase I Controls	82	74	30	-	-
With Phase I Controls Recommended Plan	75 2	74 <i>4</i>	30 1 / 4 ¹	-	-

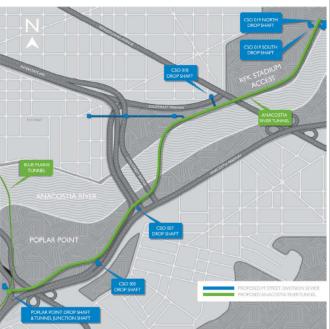
Notes: 1. One at Piney Branch, four at the other Rock Creek CSOs.

Combined Sewer Overflow Systems

Blue Plains Tunnel: 7.4 km of 40 m diameter

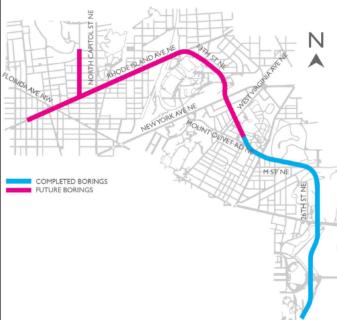
DC CLEAN RIVERS PROJECT DIVISION A-BLUE PLAINS TUNNEL

PROJECT LOCATIONS:



DC Water's Clean Rivers Project includes:

Anacostia River Tunnel: 3.8 km of 7 m. diameter


DC CLEAN RIVERS PROJECT DIVISION H-ANACOSTIA RIVER TUNNEL

Northeast Boundary Tunnel: 8.2 km of 7 m. diameter

CLEAN RIVERS PROJECT NORTHEAST BOUNDARY AND BRANCH TUNNELS

PROJECT LOCATIONS:

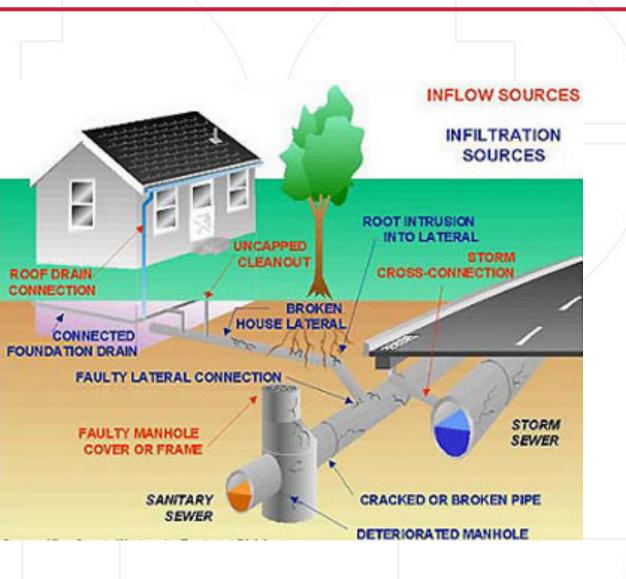
King County Portland ragansett New York Chicago Philadelphia **Omaha** San Francisco Indianapolis D.C. Atlanta United States Environmental Protection Municipality w/ green

Combined Sewer Overflow Systems

- Storage tunnels have been the prevalent solution to reducing CSOs
- Growing trend throughout the U.S. to construct green infrastructure to reduce peak wet weather flows
- Growing acceptance from EPA that green infrastructure is a viable alternative to storage tunnels

Greening CSO Plans:

Planning and Modeling Green Infrastructure for Combined Sewer Overflow (CSO) Control U.S. Environmental Protection Agency

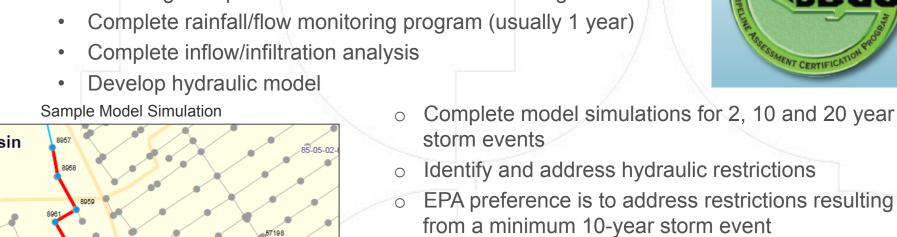

infrastructure projects

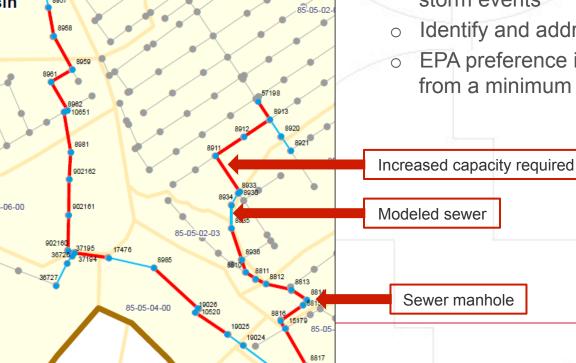
Municipality w/ storage tunnel project

Sanitary Sewer Overflow Systems

Baltimore County

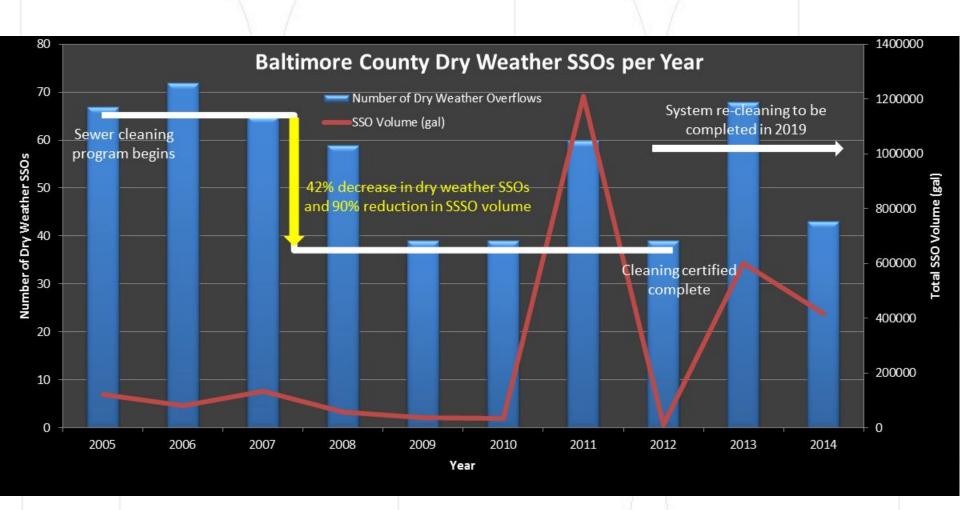
Louis Berger


Sanitary Sewer Overflow Systems


Baltimore County

- Separate stormwater and wastewater collection systems
- Dry weather SSOs occur due to lack of proper operation and maintenance
- Wet weather SSOs occur due to inadequate hydraulic capacity and/or inflow/ infiltration

Consent Decree Requirements


- Inspect collection system
- Identify and address defects found during the inspection phase
 - Regional preference to use NASSCO PACP guidelines

Results of an Effective O&M Program

Sample of Baltimore County's GIS-based corrective action planning system

Lessons Learned

Data Sharing

- How do we use/share all of the data that we've collected?
 - Develop comprehensive asset registry
 - Implement enterprise-wide data sharing and analyses tools

Lessons Learned

Level of Service

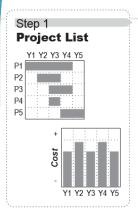
- What is our level of service?
 - What is management's expectations?
 - How many dry weather SSOs are acceptable?
 - What is an acceptable response time to a customer complaint?
 - How much staff and money will these expectations require?
 - What is the customer's expectations?
 - How much is the customer willing to pay?

Sample Definition of Level of Service

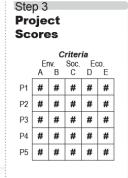
	Sample Delinition of Level of Service
Level of Service	Description
A	Meets City's design criteria under peak wet weather flow.
В	Meets City's design criteria under peak dry weather flow and no more than 100 percent of full pipe capacity under peak wet weather flow.
С	No more than 80 percent of full pipe capacity under peak dry weather flow and no more than 100 percent of full pipe capacity under peak wet weather flow.
D	No more than 90 percent of full pipe capacity under peak dry weather flow and no more than 110 percent of full pipe capacity under peak wet weather flow.
E	No more than 110 percent of full pipe capacity under peak dry weather flow and no more than moderate surcharge under peak wet weather flow.
F	More than moderate surcharge under peak dry weather flow or significant surcharge or predicted overflow under peak wet weather flow.

Lessons Learned

Prioritization

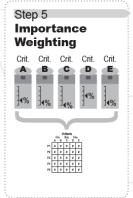

- How do we justify future costs to maintain our level of service?
 - What is our municipalities financial capacity?
 - What do we own and what is the condition of our assets?
 - What is the remaining life of our assets?
- How do we prioritize system repairs/upgrades?
 - What is the condition of each asset and what is the risk if no repair/upgrade is made?
 - Can we maintain our level of service if we don't repair/upgrade our assets?

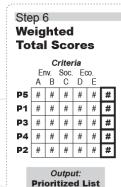
Risk Assessment Matrix

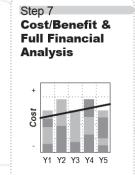

Criticality of	Risk of Failure Rating			
Failure Rating	0.1 to 6.42	≥ 6.43 and < 7.92	≥ 7.93	
0.1 to 4.19				
≥ 4.20 and < 4.79	Low Priority	Moderate Priority	High Priority	
≥ 4.80				

Sample of Baltimore County's force main condition/criticality prioritization matrix

Baltimore IPF Process

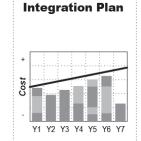



Step 4 Scenario Development Consent Decree EPA's IPF with SW & WW only Baltimore's IPF


Step 10

Finalized

with DW, SW & WW



Step 8



Step 9

Step 11

Questions? Anwer Hasan, Senior Vice President E-mail: ahasan@louisberger.com