

Ecological Genomics 3 credits

MEES 663 Fall 2020

Course Objectives / Overview

New technologies in genomics, especially next-generation sequencing, have revolutionized the fields of ecology, evolutionary biology, and biological oceanography. With greater detail and higher throughput we can now study adaptive responses of marine organisms to their environment, use phylogenetic and metagenomic approaches to study the evolution and biogeochemical relevance of microbes, and monitor and track species for conservation.

This course will cover the major research topics in ecological genomics, including the basic bioinformatics tools of the field (e.g assembly, alignment of sequence reads, sequence clustering), microbial community metagenomics and metabarcoding, and genome scan approaches in animal populations. The course will comprise lectures, student-led discussions of primary literature exemplifying applications of genomics to contemporary environmental problems, and hands-on assignments manipulating and analyzing real genomic data sets with the latest bioinformatic tools in the UNIX/Linux and R environments.

Expected Learning Outcomes

- Current next-generation sequencing methods and genomic tools and their applications to question in ecology
- Selected concepts in population genetics and microbial ecology/evolution amenable to next-gen data
- Basic bioinformatic manipulation of next-generation sequencing data in UNIX
- Advanced scientific paper analysis and presentation skills

Course Assessment / Grading

Course grades will be based on the discussions (25%), final presentation and paper (40%), homework assignments (25%), and general participation (10%).

INSTRUCTOR DETAILS:

Clara Fuchsman

cfuchsman@umces.edu 410-221-8382

Louis Plough

lplough@umces.edu 410-221-8474

CLASS MEETING DETAILS:

Dates: MW

Times: 3:00-4:20 pm Originating Site: HPL

IVN bridge number: (******) Phone call in number: (***) Room phone number:(*****)

COURSE TYPE:

Check all that apply

٠.		~11		"PP"
	Four	nda	tion	

- ☐ Professional Development
- ☐ Issue Study Group
- ☐ Seminar

Prerequisites

N/A

Teaching Assistant

N/A

Tentative Weekly Course Schedule

Date	Instructor	Section	Topic	Homework Due
Week 1 M	Louis/Clara	Introduction/Bioinformatic resources	Introduction to Ecological Genomics /Joint intro	
Week 1 W	Louis	700047000	Next-generation sequencing - technologies and data	
Week 2 M			LABOR DAY!	
Week 2 W	Louis		Intro to Linux/Unix	
Week 3 M	Louis		Linux 2 (awk,sed,other functions)	
Week 3 W	Clara		Python.	
Week 4 M	Louis	Ecological (population) genomics of plants and animals	Working with NGS data in populations - Assembly, alignment, and variant calling	Linux basics
Week 4 W	Louis		Population genetics - Theory and concepts	
Week 5 M	Louis		Population genetics II - markers and diversity	Project ideas due
Week 5 W	Louis		Landscape/seascape genomics	•
Week 6 M	Louis		Local adaptation - genome scans and isolation by environment	
Week 6 W	Louis		Gene expression and gene network analysis	
Week 7 M	Louis		Experimental functional genomics (Crispr) and GWAS	Pop gen
Week 7 W	Clara	Community analysis - 16S rDNA		
Week 8 M	Clara		16S rDNA network analysis	
Week 8 w	Louis		eDNA I - Methods and targets	
Week 9 M	Louis		eDNA II - community analysis (metabarcoding)	
Week 9 W	Clara		Phylogenetic Trees evolution and application	Community analysis
Week 10 M	Clara		Phylogenetic Trees placement of reads/amplicons on trees	
Week 10 W	Clara		Horizontal gene transfer	
Week 11 M	Clara		Metagenomics and microbes	
Week 11 W	Clara		Metagenomics II binning genomes	
Week 12 M	Clara		Microbial transcriptomics	Metagenomics
Week 12 W	Clara	 .	Proteomics	
Week 13 M		Final projects/presentations	THANKSGIVING! (Work on Project)	
Week 14M			Work on Project	
Week 14 W			Work on Project	
Week 15 M			Work on Project	
Week 15 W (Dec. 2)			Student presentations	Final presentation
Week 16			Work on paper	Final paper due

Required textbooks, reading and/or software or computer needs

Readings will be provided to students (some text references, mostly scientific papers). Access to a Linux server or cluster will be provided.

Course Communication

Moodle, phone, or email. Meetings by appointment.

Resources

[Course website: www.moodle.com/xxxxx]

Campus Policies

The University of Maryland Center for Environmental Science has drafted and approved of various academic and research-related policies by which all students and faculty must abide.

Please visit http://www.umces.edu/consolidated-usm-and-umces-policies-and-procedures for a full list of campus-wide academic policies.