	Species Distribution Modeling in	MEES **
University of Maryland	R	Semester?
CENTER FOR ENVIRONMENTAL SCIENCE	1 Credit	

Course Objectives / Overview

This seminar will introduce graduate students to species distribution modeling with R. Species distribution modeling (SDM), also known as climate envelope-modeling, habitat modeling, and ecological nichemodeling, is now widely used in ecology to estimate and map habitat suitability and species distributions. This course will cover all aspects of species distribution modeling, including data preparation, model fitting and evaluation, and projecting models to new place and/or times, with an emphasis on applications to conservation, biogeography, and global change. The primary goal of the course is to provide students with the skills necessary to use techniques of species distribution modeling in their own research.

Expected Learning Outcomes

- 1. Understanding of the drivers of species distributions, niche theory, and model assumptions
- 2. Ability to acquire and prepare species occurrence data for SDMs
- 3. Ability to acquire and prepare environmental data for SDMs
- 4. Ability to fit, interpret, and evaluate SDMs using different statistical algorithms
- 5. Understanding of ensemble modeling and model averaging
- 6. Projection and interpretation of SDMs across space and through time

Course Assessment / Grading

Students will be assessed through homework assignments and a final project.

INSTRUCTOR DETAILS: Matt Fitzpatrick

<u>mfitzpatrick@umces.edu</u> (301) 689-7131

CLASS MEETING DETAILS:

Dates: Times: Originating Site: IVN bridge number: (******) Phone call in number: (****) Room phone number: (******)

CURRICULUM FULLFILMENT:

MEES *** fulfills a *** (PD, ISG, etc) MEES requirement. OR elective etc

Prerequisites

Ecology Basic R programming Introductory Statistics

Teaching Assistant N/A

Tentative Weekly Course Schedule

Week 1: Background von Humboldt – Essay on plant geography Gleason – Individualistic plant concept	
Week 2: Niche theory Grinnell – Niche relations of the California thrasher Hutchinson – Concluding remarks	
Week 3: Niche theory II Chase & Leibold – Ecological niche Ch. 1 Hubbell – Unified theory of biodiversity Ch. 1	
Week 4: Data: Environmental Hijmans – High resolution climate data	
Week 5: Data: Occurrences Barbet-Massin – Choosing pseudo absence points Can GBIF data predict large scale patterns?	
Week 6: Algorithms 1: Envelopes Guisan – Offering more than simple habitat models	
Week 7: Algorithms 2: Regression Elith – How do they differ? WHY do they differ? Elith – Novel methods improve species distribution predictions	
Week 8: Algorithms 3: Machine learning Elith – Statistical explanation of maxent for ecologists Brieman – Random forests	
Week 9: Model evaluation Hirzel – Evaluating presence only distribution models Franklin – Mapping species distributions	
Week 10: Projecting models in space and time Quantifying the niche through time	
Week 11: Model Ensembles & averaging Araujo – Ensembling species distribution models Thuiller – biomod2 – ensemble modelling of species distribution models	
Week 12: Practical uses Identification of unsampled populations using SDM	
Week 13: Integrating genetics/intraspecific variation Yannic et al. – Past and future genetic diversity in Caribou Mapping local adaptation of Arabidopsis	

Week 14: Other ways of predicting distributions Vaclavik – Invasive species distribution modelling

Required textbooks, reading and/or software or computer needs

TBD

Course Communication

Google Drive, email.

Campus Policies

The University of Maryland Center for Environmental Science has drafted and approved of various academic and research-related policies by which all students and faculty must abide.

Please visit <u>http://www.umces.edu/consolidated-usm-and-umces-policies-and-procedures</u> for a full list of campuswide academic policies.

Course-Specific Policies and Expectations

[Separate from the campus-wide policies linked earlier, you may want to outline any additional course policies of which students need to be aware. Also include late work policy, etc.]

Week 15: Other ways of predicting distributions: Community level models Maguire et al – Controlled comparison of SDM and CLM Ferrier et al – Spatial modeling at the community level