UMCES INTERNSHIP

Summer 2019 - Scott McKinstry

WORKING IN A LAB

- Safety and appropriate lab wear.
- Understanding of materials and equipment used.
- Mindfulness of others in the lab.
- Communication about supplies and equipment.

CLEANLINESS & NEATNESS

YAY NAY

OTHER OPPORTUNITIES

- Bird Walks
- Ecology Readings
- -AMJV
- Lab Events

INTERNSHIP RESEARCH

•Identification of sources of nitrate (NO₃) in rivers during storm events.

•Isotopic composition differences between sources of NO₃ measured using the denitrifier method and IRMS.

WHY WE CARE

• Excess NO₃ pollution from upland watersheds contributes to algal blooms and the formation of dead zones in the Chesapeake Bay. (Kemp et al. 2005)

 Understanding the sources of NO₃ can allow us to take steps to decrease the amount of nitrogen entering the Bay.

DENITRIFIER METHOD

- First, the bacteria are grown on shaker table overnight.
- Next, the bacteria are mixed with a nitrate-free broth and injected into vials.
- The vials are then placed on a "purging" rack, where helium is entered into the vials and any atmospheric gases (N₂ and O₂) are emitted.
- Lastly, the samples collected from the storm events are added into the vials and bacteria convert NO_3 to nitrous oxide (N_2O).

WATERSHEDS

RESEARCH QUESTION

Does the size of the storm have a correlation with the concentration of total and atmospheric NO3?

Total Precipitation Depth (cm) vs. Event Mean Concentration (mg/L)

TOTAL NO₃ LOAD (KG/HA) VS. MAX PRECIPITATION INTENSITY(CM/HR.)

Gunpowder Falls - Storm Event 3

 $12/28/2018\ 0:00\ 12/28/2018\ 4:48\ 12/28/2018\ 9:36\ 12/28/2018\ 14:2412/28/2018\ 19:12\ 12/29/2018\ 0:00\ 12/29/2018\ 4:48\ 12/29/2018\ 9:36\ 12/28/2018\ 14:2412/28/2018\ 19:12\ 12/29/2018\ 0:00\ 12/29/2018\ 4:48\ 12/29/2018\ 9:36\ 12/28/2018\ 19:12\ 12/29/2018\ 0:00\ 12/29/2018\ 4:48\ 12/29/2018\ 9:36\ 12/28/2018\ 19:12\ 12/29/2018\ 0:00\ 12/29/2018\ 4:48\ 12/29/2018\ 9:36\ 12/29/2018\ 0:00\ 12/29/20$

DATE & TIME

→Discharge

→ Atm. NO₃ Concentration

Gunpowder Falls – Storm Event 6

Gwynn's Falls – Storm Event 3

12/27/2018 19:12 12/28/2018 0:00 12/28/2018 4:48 12/28/2018 9:36 12/28/2018 14:24 12/28/2018 19:12 12/29/2018 0:00 12/29/2018 4:48 12/29/2018 9:36

DATE & TIME

Discharge

→ Atm. NO₃ Concentration

Gwynn's Falls – Storm Event 5

→ Atm. NO₃ Concentration **→** Discharge

Gwynn's Falls - Storm Event 6

5/4/2019 19:12 5/5/2019 0:00 5/5/2019 4:48 5/5/2019 9:36 5/5/2019 14:24 5/5/2019 19:12 5/6/2019 0:00 5/6/2019 4:48 5/6/2019 9:36

DATE & TIME

CONTINUING RESEARCH

- Currently waiting on isotope data from remaining storm samples.
- More data will help us better understand the relationship between storm size and sources of nitrate.
- Insight on relationships between the urban and rural watersheds.

SPECIAL THANKS TO:

- Joel Bostic
- Kevin Dodge
- Rhonda Schwinabart
- Robin Paulman
- Pavithra Arachchige
- Katie Kline
- FRA's
- Graduate Students
- Professors
- Lab Staff