Setting Up Big Dye Terminator Reactions for a 96-Well Format

Preparing the Reactions

Template Quantity

The table.1 shows the template quantities for the Big Dye terminator chemistry for a 1X cycle sequencing run.

Template	Template Quantity
PCR product:	
100-200 bp	1-3 ng
200-500 bp	5-30 ng
500-1000 bp	30-50 ng
1000-2000 bp	50-80 ng
>2000 bp	80-120 ng
Single stranded plasmid	50-100 ng
Double stranded plasmid	250-400 ng
Cosmid, BAC	0.5-1.0 μg
Bacterial genomic DNA	2-3 μg

Table.1

Preparing 1X Reactions

Reagent	Quantity
Terminator Ready Reaction mix	2.2μl
Template	-
single-stranded DNA	50-100 ng
double stranded DNA	250-400 ng
PCR product DNA	1-120 ng (depending on size,
	see table.1)
Primer	3.2 pmols
Deionized water	q.s
Total volume	10µl

Performing Cycle Sequencing

To perform cycle sequencing under standard conditions:

Step 1: 95°C for 5 minutes Step 2: 95°C for 15 seconds Step 3: 50°C for 15 seconds Step 4: 60°C for 4 minutes Go to step 2, 49 more cycles

4°C, forever.

Preparing Extension Products for Electrophoresis

To perform EDTA-Ethanol precipitation:

- 1. Add 10µl of deionized water and 5µl of 125mM EDTA for 10µl reactions.
- 2. Add 60 µl of 200 proof ethanol.
- 3. Seal the plate with adhesive-backed aluminium foil tape. Press the foil onto the plate to prevent any leakage.
- 4. Invert the plate four times to mix.
- 5. Leave the plate at room temperature for 15 minutes to precipitate the extension products.
- 6. Place the plate in a table-top centrifuge with plate adaptor (Centrifuge 5810R, Eppendorf) and spin it at 3000 rpm for 30 minutes.
- 7. Remove the adhesive tape and discard the supernatant by inverting the plate onto a paper towel.
- 8. Invert the plate and spin up to 700 rpm, then remove from the centrifuge.
- 9. Rinse the pellet by adding 60μ l of 70 % ethanol to each well.
- 10. Seal the plate with adhesive tape and invert the plate four times to mix.
- 11. Place the plate in a table-top centrifuge and spin at 2000 rpm for 14 minutes.
- 12. Remove the adhesive tape and discard the wash onto a paper towel that is folded to the size of the plate.
- 13. Place the inverted plate with the towel into the table-top centrifuge and spin up to 700 rpm.
- 14. Remove the plate and discard the paper towel.

Note: Pellets may not be visible. Make sure the samples are protected from light while they are air drying.

Loading the samples for electrophoresis

- 1. Re-suspend the pellets in 10µl of Hi-Di Formamide and mix by vortexing.
- Denature the DNA at 95°C for 2 minutes and immediately place on ice for 10 minutes.
- 3. Centrifuge the plate to ensure the sample is positioned at the bottom of the wells.
- 4. Assemble the plate and place the plate assembly on the autosampler.
- 5. Run the samples using the appropriate Sequencing Module.