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Abstract

Stream network density exerts a strong influence on ecohydrologic processes in watersheds, yet existing stream
maps fail to capture most headwater streams and therefore underestimate stream density. Furthermore,
discrepancies between mapped and actual stream length vary between watersheds, confounding efforts to
understand the impacts of land use on stream ecosystems. Here we report on research that predicts stream
presence from coupled field observations of headwater stream channels and terrain variables that were calculated
both locally and as an average across the watershed upstream of any location on the landscape. Our approach used
maximum entropy modeling (MaxEnt), a robust method commonly implemented to model species distributions that
requires information only on the presence of the entity of interest. In validation, the method correctly predicts the
presence of 86% of all 10-m stream segments and errors are low (<1%) for catchments larger than 10 ha. We apply
this model to the entire Potomac River watershed (37,800 km2) and several adjacent watersheds to map stream
density and compare our results with the National Hydrography Dataset (NHD). We find that NHD underestimates
stream density by up to 250%, with errors being greatest in the densely urbanized cities of Washington, DC and
Baltimore, MD and in regions where the NHD has never been updated from its original, coarse-grain mapping. This
work is the most ambitious attempt yet to map stream networks over a large region and will have lasting implications
for modeling and conservation efforts.
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Introduction

Stream network density and ecohydrologic processes are
closely linked through geologic and land use characteristics in
watersheds [1]. Over land and through soil and bedrock
substrate, water moves slowly and is subject to chemical
transformations unique to conditions of continuous contact with
geologic materials. In contrast, once water enters stream
channels it is rapidly transported out of watersheds, reducing
the amount of time for biological uptake and stream nutrient
processing. Therefore, stream network density dictates both
the relative importance of terrestrial and aquatic influences on
stream chemistry and the residence time of water in
watersheds. Models and empirical studies of watershed
processes are highly sensitive to estimates of stream network
density [1,2,3].

The management implications of knowing stream location
and network structure cannot be overstated. At all levels of
social organization, the location of streams, be they
permanently or ephemerally flowing, influences land use

decisions through the impact of surface water on the cost of
developing land and on forest and agricultural productivity. The
relationship between stream presence and land use has
become more formalized over time through legislation and
management of riparian buffers and wetlands [2,4].
Interpretation of such legislation has reached the United States
Supreme Court, where Chief Justice Roberts stated that
“where a tributary ends [the confluence] is clear; but where it
begins is a problem” [5]. Such arguments and related
enforcement of legislation regarding development that disturbs
streams, clearly requires maps of stream channel networks
with detail that matches societal understanding of what
constitutes ”waters of the United States” [6]. Such maps do not
currently exist for large areas, severely limiting our ability to
understand, protect, and restore the ecological functioning of
these natural assets.

The number and length of headwater streams in any
landscape is a primary determinant of stream network density
and the overall quality of any stream map is determined by its
ability to resolve these small streams [7]. Many headwater
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streams are not included in existing hydrographical maps [8],
such as the U.S. National Hydrography Dataset (NHD; [9,10]),
either because they were buried during the course of urban
development [11] or because their source areas were smaller
than the minimum mapping size at the time of map generation.
These “missing streams” severely limit the effective analysis of
potential stream density based on the NHD, constituting a
major problem for efforts to form regulatory policy intended to
protect streams. Methods for re-mapping headwater streams
and improving on the NHD include complex geospatial
techniques [12,13,14,15,16], often requiring high-resolution
topographic data, and detailed field and remote sensing
mapping efforts [17,18,19]. Such techniques are challenging to
implement over large areas [20,21], but have positioned the
scientific community to make significant advances in this area.
The final purpose of any stream map should influence the
selection of a stream mapping technique. Perhaps the most
important consideration is whether or not to assume streams
are continuous, linear features [20]. For some scientific
purposes, discontinuous stream segments can be
accommodated. However, most practitioners require that
streams be represented by continuous lines. Secondly, the
union of new stream maps with older stream maps such as the
NHD can provide data set continuity, but might increase the
error (either commission or omission) of the resulting stream
map. Finally, small-scale variability in topography can influence
the identification of channel heads, the most uphill expression
of streams. Such variability must either be reduced or its effect
on stream map accuracy quantified if the resulting stream
maps are to be used with confidence.

Recognizing the need for stream maps with spatially
consistent accuracy over large geographic extents, we
developed an empirically-driven workflow for mapping streams
that is based solely on commonly-available geospatial data. In
our approach, we do not initially assume streams are
continuous features extending down gradient from channel
heads. Instead, we describe a method that maps the probability
of stream presence for each grid cell in a 10-m resolution
digital elevation model. This technique provides flexibility in
representing the topological characteristics of streams. Further,
we intentionally chose a broad definition of stream [22],
including all features exhibiting sorted bed load between
definable channel banks. Regardless of discharge
permanence, headwater channels dictate the delivery of
sediments, nutrients, and pollutants to downstream waters and
knowledge of their location is critical to understanding
watershed processes [23], and evaluating human and
ecological values of stream channels [24]. Further, although
discharge permanence is often referenced in jurisdictional
documents [6], it is dependent on climate variability, is
temporally variable, and can be difficult to characterize over
large areas.

The final product resulting from this work is a high-resolution
map (derived from a 10m/pixel digital elevation model) of
potential streams for the entire Potomac River watershed and
all watersheds in the state of Maryland west of the Chesapeake
Bay. The Potomac River was chosen because of (1) its cultural
and political importance as the primary watershed supplying

the city of Washington, District of Columbia; (2) its major
contribution of water, sediment, and nutrients to Chesapeake
Bay, the largest estuary in the U.S.; and (3) its geomorphic
diversity as it flows through 5 physiographic provinces
characteristic of the eastern U.S. Recent work in this
geographic area has covered many aspects of headwater
stream functioning and its relationship with land use change
[25,26]. Indeed, the Potomac River watershed, and mid-Atlantic
U.S. in general, have become a valuable outdoor experimental
laboratory for addressing these issues [27,28]. We intend our
results to advance ongoing research by providing a useful high-
resolution stream map for this region and a new methodology
for future applications in other regions. Because the NHD is
used in the U.S. for nearly all work related to streams
(scientific, regulatory, etc.), we compare our results with the
NHD to understand its strengths and shortcomings.

Methods

Site description
The study region, covering 5.8 x 104 km2, includes the large

Potomac River watershed and 5 smaller watersheds needed to
complete coverage for all of Maryland (USA) west of the
Chesapeake Bay (Figure 1). The physiographic setting spans a
landscape continuum from the Appalachian Mountains to the
Chesapeake Bay, and includes the large metropolitan areas of
Baltimore, MD and Washington, DC. As such, the study area
exhibits considerable geologic and land use diversity [29]. The
Potomac River serves as the major water source to the large
metropolitan population of the U.S. capital and is the second
largest source of freshwater input to the Chesapeake Bay [30].

The study region includes 5 physiographic provinces (Figure
1), each with a distinctive geology and land cover influencing
stream network density [31]. The mostly forested Appalachian
Plateau (AP) is underlain by sandstone, shale, conglomerate,
and coal. Extreme folding and faulting in the adjacent Ridge
and Valley (RV) has created roughly parallel ridges and valleys
composed of a variety of geologic materials, including
limestone, shale, siltstone, sandstone, chert, and mudstone.
Present land cover here is a mix of forest (mostly oak-hickory)
and agriculture. The heavily forested Blue Ridge (BR) is
characterized by steep, rugged terrain over mostly
metamorphic rocks. Numerous springs exist throughout this
province, particularly along fractures and at the boundaries
between lithologic units. The Piedmont (PD) is characterized by
irregular plains and moderate relief with thick, clay-rich, soils
underlain by deeply weathered bedrock. The Coastal Plain
(CP), which is adjacent to the Chesapeake Bay, is relatively flat
with the exception of a gentle slope extending from its contact
with the Piedmont to the Bay, including several terraces formed
by former oceanic shorelines. The CP is underlain by a thick
layer of sediments (gravel, sand, silt, and clay) that tend to be
poorly drained, particularly in the lowlands of the outer CP. The
inner CP constitutes the more upland areas and consists of
fluvial-deltaic sediments (gravel, sand, clay) formed as large
rivers from the west eroded to the sea. Lowland areas contain
swamps and marshes, while mixed forests dominate upland
areas. Land cover in the Piedmont and Coastal Plain is mixed,
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with much larger urban areas compared to the other three
provinces.

Landscape variables
We derived terrain variables (accumulation area, topographic

slope and curvature) from 10-m National Elevation Data (NED
[32]) that were expected to provide spatial information useful

for predicting the location of stream channels [20]. To these,
we added one soil property (silt + clay percentage [33])
expected to relate to soil erodibility and permeability. Terrain
processing included the following steps [34,35,36]: (1)
development of a hydrologically corrected digital elevation
model (10-m resolution) (2), flow direction modeling (3), flow
direction enforcement to NHD flowlines, e.g., [37], and (4) flow

Figure 1.  The study region covers the entire Potomac River watershed and adjacent watersheds along the Maryland–
Pennsylvania boarder, and includes area in 5 distinct physiographic provinces (CP = Coastal plain; PD = Piedmont; BR =
Blue ridge; RV = Ridge and valley; and AP = Appalachian plateau).  Triangles denote the 253 surveyed channel heads.
doi: 10.1371/journal.pone.0074819.g001
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accumulation calculation for each 10-m pixel. For each
landscape variable, we calculated both a local value and an
accumulated value, which was the mean of all pixels
contributing flow to each location. Each landscape variable was
therefore represented by a continuous raster, covering the
entire study region at 10-m spatial resolution.

Field surveys of stream channels
Field surveying of channel heads and stream presence data,

including quality assurance, are detailed in Julian et al. (2012).
Briefly, we collected the geographic position of 253 channel
heads located on public land across the five physiographic
provinces of the mid-Atlantic U.S. and identified the closest
pixel to each field surveyed location that, based on its flow
accumulation area, could realistically be considered the
intended channel head location. We studied the location of
channel heads on plots of landscape variables (local slope,
plan and profile curvature, etc.) against flow accumulation area,
and presented our observations in a previous publication [9].
From the resulting database of channel head locations we
identified stream presence by labeling all pixels down flow
direction from channel heads as streams. In this way, small
watershed maps were generated for all areas where field data
were available. Mapped watersheds, which in some cases
contained several small tributaries, varied from 1.2 to 814.1 ha,
contained between 1 and 46 channel heads each, and
cumulatively covered 62.6 km2. Because we noted only the
presence of stream channels and did not record absence, we
used a stream prediction algorithm (see next section) that
requires presence-only data and uses in the place of absences
‘background’ points selected at random from the landscape. In
this application the total number of stream presence
observations was 10,565. No specific permits were required for
the described field surveys. No samples were collected (e.g.,
invertebrates, plant species, corals, or non-living materials.)

Predicting the location of stream channels
The capability to predict the location of channel heads from

topographic variables leads directly to stream maps if and only
if streams are assumed to be continuous linear features [20]
(i.e., if channel head locations are known or predicted, streams
can be represented as continuous lines flowing down gradient).
On the other hand, there are many methods for predicting the
presence or absence of geomorphic or biologic features on the
landscape that do not require spatial continuity [38,39], but can
be made continuous after the fact if so desired. Such methods
are generally lumped into the category of species distribution
models. Previous work compared these two approaches to
mapping streams [20]. We seek to advance the science by
selecting a relatively novel species distribution model for
predicting the probability of stream presence.

We related the landscape variables to stream channel
occurrence data using MaxEnt 3.3.3e [40]. MaxEnt is an
implementation of a statistical approach called maximum
entropy that characterizes probability distributions from
incomplete information. In this application, the incomplete
information is a geographic sample of the topographic and soil
variables associated with the presence of stream channels on

the landscape. In the context of modeling stream networks
using maximum entropy, the assumptions are that (1) stream
occurrence data represent an incomplete sample of an
empirical probability distribution describing the probability of
stream presence in a given environment, that (2) this unknown
distribution can be most appropriately estimated as the
distribution with maximum entropy (i.e. the probability
distribution that is most uniform) subject to constraints imposed
by terrain and soil variables, and that (3) this distribution of
maximum entropy approximates the potential occurrence of
stream channels on the landscape. MaxEnt minimizes the
relative entropy between the probability density of
environments where stream channels are known to be present
and the probability density of environments estimated from the
landscape as a whole from the randomly generated
background data (for more details, see 40,41). MaxEnt has
most commonly been used to model and map species
distributions. While other species distribution modeling
techniques have been used to model the occurrence of
geomorphic features [42,43,44], to our knowledge this is the
first MaxEnt application to do so.

The field survey data (10,565 individual 10-m resolution
pixels with stream presence observations) and 50,000
background points were split randomly (70%-30%) into model
training data and testing data, respectively. To fit models, we
used 10-fold cross-validation and the default value for the
convergence threshold (10-5) suggested previously [40]. The
maximum number of iterations was set to 5000. Determination
of regularization values, which address problems of over-fitting
and selection of ‘features’ (terrain and soil variables and/or
functions derived from combinations of such variables) were
performed automatically by the program per the default rules.
The MaxEnt procedure resulted in maps of the predicted
probability of stream presence (as estimated using logistic
output from MaxEnt [41,45]), information on the relative
importance of the landscape variables for predicting streams,
and Area Under the Curve (AUC; [46]) of the receiver-operating
characteristic (ROC) plot for evaluating predictive performance
using training and testing survey data. To calculate and
interpret of the importance of landscape variables for predicting
streams, we ran a second MaxEnt model that used survey data
from each physiographic province separately. For this second
case, we used 10,000 background values for each
physiographic province, but kept all other parameters the same
as above.

Stream probability did not always increase continuously
when moving downstream along stream channels because
curvature and slope values along flowlines with small
contributing areas can vary substantially across short distances
(due to both DEM errors and actual spatial variability). We
considered it important to apply an a priori constraint that
stream channels be continuous landscape features. This, of
course, is not always the case as channels do occasionally
become discontinuous along flow lines. However, stream maps
with discontinuous channels are considered undesirable by
practitioners and are only used in special cases. We addressed
the occurrence of discontinuous stream channels in a two-step
process. First, we implemented a filter along flow lines for all
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MaxEnt probabilities greater than 0.01 that replaced the
probability of stream presence at each location with the mean
probability of the 3 pixels (one upstream and one downstream)
centered on that location. This procedure had the effect of
smoothing the probability of stream presence along each flow
line, primarily reducing the occurrence of isolated pixels with a
high stream probability. Second, after applying a threshold (the
calculation of which is described below) to the stream
probability maps, we connected all discontinuous segments of
steam presence along flow lines, effectively delineating
streams beginning at their most probable upstream prediction.

To map stream locations, the continuous output (0-1) from
MaxEnt had to be converted to predicted presence (1) or
absence (0) and a probability threshold of 0.5 does not
necessarily result in the best fit to the data [47]. Beyond
providing a measure of model performance (AUC), the ROC
plot can also inform the selection of thresholds. As typically
implemented, the ROC is a plot of the true-positive prediction
rate (sensitivity; equivalent to 1 – false negative rate) versus
the false-positive prediction rate (1 – specificity) across all
possible threshold values [46]. A threshold that maximizes true
positive predictions while minimizing false positive predictions
is desirable and can easily be identified from the ROC plot as
the point closest (Euclidian distance) to a true positive rate of 1
and a false positive rate of 0. However, this approach assumes
that the costs of false positive and false negative errors are
equivalent [48,49]. Our field survey exhibited vastly differing
areas of stream and non-stream (~ a 1:60 ratio) with many of
the non-stream locations receiving very low MaxEnt
probabilities (i.e., < 0.01). Using a traditional ROC plot, true
positive and false positive predictions would be weighted 1:60,
but we desired these to be weighted more equally. Therefore,
we used a modified ROC plot to determine the threshold that
maximized true positive accuracy while limiting false positive
errors. This was accomplished by normalizing the number of
false positive predictions by the number of stream survey
points (rather than the number of non-stream survey points as
is done in a traditional ROC plot), effectively limiting the area
that could be predicted as streams to the area of streams in the
field survey [50]. The result was a higher threshold than would
be obtained from a traditional ROC plot and therefore a more
conservative estimate of stream presence across the
landscape. For this analysis we used the field survey data in
each physiographic province separately as a check on the
robustness of the calculated thresholds. Following Maxent
modeling, threshold selection, and flow-line filtering and
cleaning to connect discontinuous stream segments, predictive
performance was assessed using the field survey data as 1-
omission error (false negative) rates.

Generating summary performance statistics
We calculated true and false prediction rates (number of true

and false predictions divided by the number of stream survey
locations) and false negative rates (number of false predictions
divided by stream survey locations) for the resulting stream
map. To evaluate how each step in the workflow influenced the
result, we also calculated these statistics for (1) raw MaxEnt
results, (2) MaxEnt results after smoothing and connecting

discontinuous stream segments, and (3) after merging with
NHD maps of streams. Finally, we calculated a second stream
map based on a critical threshold flow accumulation area at the
channel head (Ac). For this map, we referenced our field
survey of streams and calculated the average Ac for each
physiographic province. We then adopted this value as the
“Tuned Ac” and mapped streams as all pixels with a flow
accumulation area greater than the Tuned Ac for each
physiographic province. We then generated summary tables for
each physiographic province detailing the true and false
prediction rates for each map (including NHD alone) for both
the entire area and for non-NHD streams.

We calculated stream density for each data set at the
Hydrologic Unit Code (HUC) 12 level by dividing the stream
length (km) by the watershed area (km2). The increase in
stream density attained by the modeled streams over the NHD
was calculated as a percentage, both across entire watersheds
and as a function of flow accumulation area. We also
calculated the total number of channel heads in each
watershed. We compared, through linear regression, the
percent increase in stream density and channel head density
against average land cover values (derived from the 2006
National Land Cover Dataset [51,52]) for each watershed.

Results

Surveyed channel heads were located at catchment areas
between approximately 1 and 100ha, which was a similar
range to what has been found in other environments [53]. In
the Appalachian Plateau and Piedmont the local slope and
catchment area at the channel head locations were negatively
correlated [9], but generally the surveyed channel heads
exhibited a large range and variability in the catchment area at
the channel head (Figure 2). This variability could be due to
any number of factors (e.g., geologic controls on groundwater-
surface water interactions, climate, historic land-use), and
precluded attempts to directly predict the location of channel
heads using available landscape data. Previous successful
attempts in this pursuit might be attributed to less spatially
variable geology [21,54]. This observation justified our
approach to stream mapping, that (as described above) utilized
all the information extracted from the location of streams to
build a predictive model for stream presence pixel-by-pixel via
MaxEnt modeling [20].

Analysis of variable contributions within MaxEnt indicated
that flow accumulation area had by far the largest relative
contribution (96.8% overall) to the model of stream presence.
Of distant secondary importance were average plan curvature
(1.5%) and average slope (0.8%). Variables averaged over the
entire catchment always had greater contribution to the model
than local variables, the latter of which in all cases did not
contribute to the predictions of stream presence. MaxEnt
performance was very stable, with the AUC equaling 0.934 for
both training and test data separately. When a separate
MaxEnt model was run for each physiographic province, the
rank order of variable contribution was similar to the lumped
model. However, the average plan curvature was more
important in the Coastal Plain and the Piedmont than
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elsewhere in the study region (Table 1). Notably, only in the
Coastal Plain was the contribution of source area below 85%.
Critical thresholds in the MaxEnt probability distribution that
maximized the true positive rate while minimizing the false
positive rate were similar for each province (0.44 (AP), 0.48
(RV), 0.50 (BR), 0.46 (PD), and 0.48 (CP)). These thresholds
were used in all subsequent accuracy assessments (e.g.,
Tables 2 and 3).

The complete stream mapping workflow delineated 1.48 x
105 km of stream length across the study region, which
included 1.19 x 105 km of streams in the Potomac River
watershed and 5.38 x 104 km in the state of Maryland west of
the Chesapeake Bay. Prior to connecting discontinuous stream
segments, false positive and negative predictions were

balanced across a large range in catchment area (Figure 3A).
True prediction rates (a measure of accuracy; Table 2) were in
the range of 70-87%, indicating that MaxEnt miss-classified a
quarter of all surveyed streams. After connecting discontinuous
stream segments, the percentage of field-surveyed streams
correctly predicted was 84% (of the 10,565 stream survey
pixels) with a false prediction rate of 16%. Accuracy varied
slightly by physiographic province (Table 2) with the lowest
accuracy achieved in the Appalachian Plateau (72%). Most
omission errors occurred in small streams with a catchment
area smaller than 10 ha (Figure 2B). For these small streams,
errors of commission and omission (false positives and false
negatives, respectively) were roughly in balance at a
catchment area of 3-4 ha (Log10CA = 0.6; where CA =

Figure 2.  Local slope vs. Log10(catchment area) for bins of increasing catchment area (black dots) across the entire survey
region and for the locations of channel heads (colored dots).  Characteristics of this plot have been discussed previously in the
literature [21,53,64], and are covered briefly in the text.
doi: 10.1371/journal.pone.0074819.g002
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catchment area in ha), which is similar to what it was before
connecting discontinuous stream segments. At any given
catchment size (Log10CA bin size = 0.2) errors of either type
were generally below 3%. False prediction rates increased
after discontinuous stream segments were connected, but only
moderately so considering true prediction rates increased as
well. For example, for the Blue Ridge true prediction rates

Table 1. Permutation importance from MaxEnt for each
parameter across the physiographic regions.

Parameter CP (952) PD (2206) BR (2870) RV (4176) AP (359)
Source Area 82.1 98 97.8 96.3 92.9
Average Plan Curvature 11.3 0.5 0.3 2.1 3.2
Average Slope 5.6 0.7 1.2 0.3 2.5
Average Profile Curvature 0.5 0.6 0.5 1 1
Local Slope 0.2 0 0 0.2 0.2
Percent Clay + Silt 0.1 0.1 0.1 0.2 0.1
Local Profile Curvature 0 0 0 0 0
Local Plan Curvature 0 0 0.1 0 0

Stream observations (n) used to fit the model in each physiographic province are
given in parentheses.
doi: 10.1371/journal.pone.0074819.t001

Table 2. False Prediction Rates (FPR) and True Prediction
Rates (TPR) for stream maps generated for a threshold
flow accumulation area (Tuned Ac), the NHD, and MaxEnt-
modeled streams at three stages in the workflow.

ProvinceTuned AcNHD Raw MaxEnt
Smoothed &
Connected MaxEnt

Merged with
NHD

 FPR TPR FPRTPRFPR TPR FPR TPR FPR TPR
CP 36 76 18 62 16 81 16 84 25 86

PD 28 90 2 45 9 87 9 88 10 88

BR 21 85 22 69 15 70 19 84 27 87

RV 18 81 5 48 17 83 16 84 17 84

AP 36 92 26 80 11 71 13 72 27 88

ALL 24 84 13 55 14 80 16 84 20 86

Ideal FPR and TPR are near 0 and 100, respectively
doi: 10.1371/journal.pone.0074819.t002

Table 3. False Prediction Rates (FPR) and True Prediction
Rates (TPR) for non-NHD streams only.

Province Tuned Ac Smoothed & Connected MaxEnt

 FPR TPR FPR TPR
CP 73 71 37 64

PD 44 81 17 78

BR 60 68 42 58

RV 35 69 28 70

AP 84 68 36 41

ALL 50 72 29 69

doi: 10.1371/journal.pone.0074819.t003

increased from 70 to 84% with the connection of discontinuous
segments. At the same time, false prediction rates increased
from 15 to only 19%, suggesting that connecting streams
corrected the classification more often than not. NHD alone
exhibited a false positive rate between 2 and 26% and an
overall true positive rate between 45 and 80% (Table 2).
Despite this low performance, as a final step, we merged the
MaxEnt stream map with the NHD. Therefore, the effect of
joining the two maps (MaxEnt and NHD) was to increase the
false positive rate (substantially in some provinces), but to
increase the true positive rate as well (Table 2, Figure 3).

We compared the performance of the connected MaxEnt
stream map with a map generated using a critical flow
accumulation area (Ac), tuned to each physiographic province
(termed the “Tuned Ac” map). The Tuned Ac map exhibited a
higher false prediction rate (between 18 and 36%) and a similar
true prediction rate (between 81 and 90%) compared with the
MaxEnt map. Because, the location of large streams is easier
to predict than small streams, we removed all NHD streams
from the field survey and compared the true prediction rates
and false prediction rates of the remaining area between these
same two maps (Table 3). The Tuned Ac map exhibited higher
false prediction rates for these small, non-NHD streams
(between 35 and 84%), but similar true prediction rates
compared with the connected MaxEnt stream map. In
summary, the advantage of the MaxEnt map was lower false
prediction rates across most of the study region at the expense
of only slightly lower true prediction rates. This can be seen
graphically in Figure 3C and 3D, which shows increased false
positive predictions over false negative predictions in the
Tuned Ac map, particularly for streams in catchments larger
than 10 ha (Log10CA = 1).

Across physiographic provinces, the heavily dissected
Piedmont and Ridge and Valley provinces, which are covered
by highly weathered soils, exhibited the highest stream density
(Figure 4). Slightly lower stream densities were found in the
groundwater-dominated Coastal Plain, and much lower stream
densities were found in the more bedrock dominated
Appalachian Plateau and Blue Ridge. Maps of stream density
at the HUC12 scale (using the complete workflow, including
merging with NHD) exhibited substantial within province
variation (Figure 5). Mapped streams exhibited higher stream
density relative to the NHD streams (Figure 5B and 5C).
Streams added to the NHD were generally smaller first- and
second-order tributaries that flow into larger streams (Figure 6).
Elsewhere, new streams were mapped as extensions of
existing NHD streams. These two types of stream additions to
the NHD resulted in stream density increases of up to 250%
over the NHD. Increases were large in the metropolitan areas
of DC and Baltimore, where streams have been buried beneath
urban land cover since before the original NHD mapping. The
increase in stream density was also large in the northeast
portion of the study area (i.e. Deer Creek – Susquehanna
watershed).

Relative to the NHD, mapped streams exhibited a distribution
that was weighted towards smaller streams (Figure 7). This
weighting varied predictably by physiographic province with
more small steams being added to the stream map in the
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Figure 3.  False positive and false negative predictions, expressed as a percentage of stream observations in the field
survey (10,565), for four stream maps: (A) raw MaxEnt results with the province-specific thresholds applied; (B) MaxEnt
results after smoothing and connecting discontinuous stream segments; (C) the results in (B) after merging with NHD
maps of streams, and (D) the Tuned Ac stream map, which uses a province-specific critical catchment area to define
streams.  Methods for each map are described in detail in the text.
doi: 10.1371/journal.pone.0074819.g003
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Piedmont, Ridge and Valley, and Coastal Plain than in the
other two provinces. At the HUC12 level, potential stream
density correlated with NHD stream density, but was strongly
offset from the 1:1 line (R2 = 0.36; P < 0.001; Figure 8A). The
density of channel heads was also correlated between NHD
and modeled streams, but with the modeled streams exhibiting
approximately 10 channel heads for every one in the NHD (R2

= 0.11; P < 0.001; Figure 8B). Although the cities of Baltimore
and DC exhibited low stream density in the NHD map, in
general, the percentage increase in stream density across all
HUC12s did not correlate with urban area, forest area, or any
other landscape variables used in the analysis.

Discussion

The effect of watershed stream density dominates over many
watershed processes, including biogeochemical and biologic
responses to land use and climate change, and atmospheric
deposition of contaminates. The number and length of the
smallest streams in a watershed, for example, determines the
proximity of any land use activity to a stream. When all
channels are recognized, the placement of roads and urban
structures without crossing or covering streams becomes
problematic. Small streams are less expensive to fill and build
over, leading to stream burial rates that increase with
decreasing stream size [11]. Overall, stream density is a
reasonable indicator of the vulnerability of watersheds to land
use change. Evidence that the Coastal Plain of Maryland,
which exhibits lower stream density than the adjacent
Piedmont (Table 1), is more resilient to the effects of
urbanization and associated changes in stream biology is
consistent with this idea [55]. At finer spatial scales, work has
shown measurable impacts from road crossings and riparian

Figure 4.  The mean and variance of stream density for
HUC12 watersheds by physiographic province (CP =
Coastal plain; PD = Piedmont; BR = Blue ridge; RV = Ridge
and valley; and AP = Appalachian plateau).  
doi: 10.1371/journal.pone.0074819.g004

buffer infringements across a large range of road and stream
sizes [56,57]. Such work supports the notion that with better
information on the locations of stream channels, land can be
strategically developed to limit impacts to aquatic ecosystems.

The stream map produced here is a representation of the
potential stream density of the mid-Atlantic region. This density
would be achievable only if the entire study region had the
same current and historic land use as the forested watersheds
used to train our model. However, land use has undoubtedly
influenced stream density away from this potential density,
increasing stream length in some locations and decreasing it in
others. In largely forested watersheds, streams lengthen
wherever low-density development (country roads, exurban
development, etc.) increases runoff and concentrates flow
through culverts [58,59]. In more heavily developed areas,
stormwater systems divert flow away from streams and
manufactured drainage structures, often replacing the potential
stream network [11]. Finally, in densely urbanized areas entire
rivers are directed underground. Because our map represents
the potential stream density, it is ideally suited to study the
extent and magnitude of these processes at landscape scales.

The new potential stream maps faithfully represent spatial
variation in stream density among physiographic regions,
therefore reflecting variation in stream habitat area and the
landscape connectivity of streams. Spatial variation in stream
density is influenced by topography, which in turn is set by the
geology of an area. The largest modes of spatial variation in
stream density were found at the scale of physiographic
provinces (Figure 4). Within-province variation was substantial
in some provinces, such as the Ridge and Valley and Coastal
Plain. Because we used entirely forested watersheds to train
our predictive model, this within province variation is not due to
land use at this scale. Instead, variation in topographic
variability and the underlying geology likely cause spatial
variation in stream density. In the Ridge and Valley, for
example, variable geology (including karst) influences the
relative contributions surface and groundwater have on stream
channel formation [9].

A primary component to our stream mapping procedure were
predictions of stream presence from MaxEnt, an approach
widely used in ecology and biogeography to predict species
distributions [60,61]. While numerous algorithms exist for such
predictive spatial mapping, most of which have seen limited
use in geomorphology [42,43,44], Maxent has the advantage of
using data only on the presence of the feature of interest, while
selecting random background data as part of model fitting and
evaluation. MaxEnt also has been found to be among the top
performing methods in terms of predictive accuracy [39,62].
Some of the same landscape variables used here (e.g.,
landscape curvature and slope, soil characteristics) have been
used to predict lake depth [63], stream distributions [20], and a
suite of geomorphic features [42]. Not surprisingly, we found
source area to have the greatest relative contribution due to its
strong control on hydrologic discharge. Of secondary
importance were average slope and plan curvature, supporting
the use of simple slope-area relationships to predict the source
area at channel initialization [54]. The average plan curvature
and average slope were most important in the Coastal plain
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and Appalachian plateau (Table 1). Variables other than source
area likely had the greatest impact on the resulting maps in
areas where source area was less than 10ha. For catchments
greater than 10ha in size, omission errors approached zero,
indicating that source area had reached a critical size and was
dominating model performance. A comparison among different
methods and a closer look at their structure and capabilities in
predictive geomorphological mapping is warranted.

Ideal stream maps will exhibit high true prediction rates (e.g.,
near 100%) and low false prediction rates (e.g., near 0%). The

Tuned Ac and NHD maps both exhibited large variation in
accuracy between physiographic provinces (Table 2). Further,
the Tuned Ac map tended to over-predict stream presence,
with larger false prediction rates than other maps. The NHD
exhibited low overall accuracy, but unexpectedly also exhibited
large false prediction rates in the Coastal Plain, Blue Ridge and
Appalachian Plateau physiographic provinces. MaxEnt-derived
stream maps exhibited true positive rates comparable to the
Tuned Ac map, but with a lower false positive rate. Further, we
found that by connecting discontinuous stream segments it was

Figure 5.  Stream density maps for HUC12 watersheds in the study region.  (A) NHD stream density was more uniform and
lower than (B) the stream density calculated from MaxEnt after smoothing, connecting discontinuous segments, and merging with
NHD. (C) The percent change in stream density highlights the effects of urban areas and other areas with poor quality NHD stream
maps. (D) Spatial variation in stream density can be explained in part by differences in geology between physiographic provinces.
doi: 10.1371/journal.pone.0074819.g005
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possible to increase true prediction rates, largely without
increasing false predictions. We were pleased with this result
given the importance maintaining low false predictions while
also maintaining a conservative estimate for total stream
length. When we merged the connected MaxEnt stream map
with the NHD, the false predictions inherent to the NHD in
some provinces were added to the model-based map (which
was undesirable), but true prediction rates increased for some
of the least accurate physiographic provinces (e.g., the
Appalachian plateau.) Overall, we would be working with a
better map if we didn’t merge the MaxEnt results with the NHD,
but due to the acceptance the NHD map has gained in
regulatory policy and practice it continues to seem prudent to
include it in any mapping effort that would be used outside of
basic science inquiry.

We also compared false and true positive prediction rates for
only those stream segments that were not also in the NHD
(Table 3). Non-NHD streams are typically smaller and include
most of the first-order channels in the field survey (Figure 6),
which tests the capabilities of the models and reveals inherent
weaknesses. Consequently, the false and true prediction rates
were far from ideal for both the Tuned Ac and MaxEnt
(connected) models. The Tuned Ac map exhibited a higher true

Figure 6.  Examples showing the density and configuration
of the streams mapped in this study (blue; MaxEnt
streams, smoothed and connected as in Figure 3B)
compared with the NHD streams (black) for (A) an urban
area and (B) a rural area.  The background image shows the
2006 NLCD land cover using the standard color scheme: urban
(shades of red), forest (green), agriculture (yellow), and water
(blue).
doi: 10.1371/journal.pone.0074819.g006

prediction rate than the MaxEnt map, but at the expense of
higher false predictions. One might argue in fact that the Tuned
Ac false prediction rate for non-NHD stream segments was so
high (reaching 84% in the Appalachian Plateau) as to be
unusable for any purpose. Although the false prediction rates of
the MaxEnt map were more manageable (ranging from 17 to
42%), true prediction rates for non-NHD streams were low for
several provinces, thus leaving room for improvement. One
improvement we see as necessary is better non-topographic
environmental data. Our maps of soil texture and physiographic
province, for example, are generated at a lower mapping
resolution than any of the other variables. Further advances in
stream map accuracy might also be possible with the inclusion
of more field survey data; mapping of channel heads is a time
and labor consuming process that might be best attempted
using citizen scientists or other forms of crowd sourced
information.

High-quality data on the landscape distribution of natural
resources is a prerequisite to sustainable development. In the
U.S., land use decisions are made with regard to stream
presence using the NHD, which is publically available to all
levels of government and society. Unfortunately, the NHD is
inconsistent in its representation of streams, and in our study
region, under-represents total stream density by as much as
250%. This underrepresentation is sometimes due to
urbanization that occurred prior to the original stream maps
being generated. However, even within forested watersheds
there is wide variability in the accuracy of the NHD. For
example, in the northeastern corner of the study region the
NHD exhibits a low stream density, apparently a result of the
original 100-k scale mapping, which has never been updated.
A detailed analysis of the impact this inaccuracy has had on
land use decisions was outside the scope of this work, but
would be warranted based on the large discrepancy between
the NHD and our estimates of potential stream density.

Beside regulation and permitting of land use activities, there
are many scientific applications for the stream maps generated
here. For the first time we have an accurate representation of
where streams once flowed through major urban areas of
Baltimore and Washington, DC. These data are critical for
quantifying the impact of urbanization on aquatic ecosystems
and provide a means to quantify the loss and fragmentation of
aquatic habitats on par with what has been available for
terrestrial habitats for decades. Analyses of stream
biogeochemistry and habitat loss should use updated stream
maps and the NHD should be updated to reflect new
information on stream presence or absence. Models attempting
to accumulate landscape loading of nutrients to streams or
otherwise simulate the hydrologic transport of materials
through watersheds would benefit from using these high-
resolution stream maps. The approach presented here is
applicable wherever digital elevation models are available and
suitable training data can be acquired. Improved stream maps,
iteratively updated through field surveys and improved digital
elevation models, are critical to forming sustainable
development plans and understanding the functioning of
Earth’s hydrologic system.
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Figure 7.  Stream length as a function of the log catchment area for each physiographic province (CP = Coastal plain; PD
= Piedmont; BR = Blue ridge; RV = Ridge and valley; and AP = Appalachian plateau).  
doi: 10.1371/journal.pone.0074819.g007
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