

Sediment Dynamics in Coastal and Estuarine Environments

3 credits

Course Objectives / Overview

This course focuses on sediment dynamics along the land-sea continuum, from intertidal to nearshore regions. The first part of the course develops relevant sediment-transport theories and equations used in the second part to examine coastal landscapes and features, including sediment/vegetation interactions. Integration of field observations and modeling approaches will be emphasized throughout the course, as will human impacts and responses to climate change.

Expected Learning Outcomes

Students will be able to:

- 1) Understand fundamental concepts of sediment dynamics in coastal and estuarine systems
- 2) Apply quantitative approaches to sediment transport and landscape formation
- 3) Review and summarize topical research papers
- 4) Connect course concepts to their own research topics
- 5) Communicate effectively in oral presentations and group discussions

Course Assessment / Grading

Homework 40% Paper discussions 15% Student presentations 15% Final 30%

Homework: Homework will be assigned approximately every two weeks and will be administered through the course website.

Paper discussions: Most Wednesdays, we will read and discuss relevant papers from the primary literature. Each student will be the primary reader for several class meetings during the semester and will be expected to lead our discussion. Papers for discussion will be posted on Moodle, and the primary reader may designate additional papers. Additional papers must be posted on Moodle 1 week in advance of the class meeting. The primary reader will prepare a "summary outline" that will include 3-5 questions to guide discussion during the class meeting. This outline must be made available to all students via email at least 1 hour before the start of class. All students are considered secondary readers for each class meeting and are expected to actively participate in the discussion.

INSTRUCTOR DETAILS:

Cindy Palinkas

cpalinkas@umcs.edu 410-221-8487

William Nardin

wnardin@umces.edu 410-221-8232

CLASS MEETING DETAILS:

Dates: TBD Times: TBD

Originating Site: HPL IVN bridge number: TBD

CURRICULUM FULLFILMENT:

Elective

Prerequisites

MEES 640 or MEES 660 or instructor permission

Teaching Assistant

N/A

Student presentations: At the end of the semester, each student will give a ~15-minute presentation explaining the geological aspects of his/her own research project, or another topic of interest. Topics are due by 10 April via e-mail to the instructors.

Final exam: The final will be an open-book, take-home exam that will be designed to take 1.5 hours, or one class meeting, to complete. It will be due one week after it is assigned, and students are expected to work alone. The final will be cumulative and will provide the opportunity for synthesis of course materials.

Tentative Weekly Course Schedule

Note this schedule assumes Monday and Wednesday meetings in Spring 2019; actual dates will be adjusted when course is scheduled. Students will be assigned to lead paper discussions after the first class meeting; assigned papers will be posted throughout the course.

Date	Day	Lecture#	Topic	Paper	Paper Leader	Due dates
28 Jan	Monday	1	Introduction to			
			course and			
			coastal			
			morphology			
30 Jan	Wednesday	2	Particle			
			properties,			
			shear stress			
4 Feb	Monday	3	Turbulence,			HW1 assigned
			velocity profiles			
6 Feb	Wednesday	4	Particle settling			
11 Feb	Monday	5	Threshold of			HW1 due
			motion			
13 Feb	Wednesday	6	Bedload and			
			bedforms			
18 Feb	Monday	7	Suspended load			HW2 assigned
20 Feb	Wednesday	8	Tides and			
			waves			
25 Feb	Monday	9	Waves (cont.)			HW2 due
27 Feb	Wednesday	10	Aeolian			
	·		processes			

4 Mar	Monday	11	Intro to eco-	HW3 assigned
			geomorphology	
6 Mar	Wednesday	12	Sediment-	
			vegetation	
			interactions	
11 Mar	Monday	13	River plumes,	HW3 due
			rating curves	
13 Mar	Wednesday	14	Tidal flats and	
			deltas	
18, 20 Mar	Monday,	No class –		
	Wednesday	Spring Break!		
25 Mar	Monday	15	Deltas and	HW4 assigned
			estuaries	
27 Mar	Wednesday	16	Marshes	
1 Apr	Monday	17	Marshes (cont)	HW4 due
3 Apr	Wednesday	18	Beaches and	
-			dunes	
8 Apr	Monday	19	Barrier islands	HW5 assigned
1			and lagoons	
10 Apr	Wednesday	20	SAV and	Presentation
1			synergies with	topics due
			marshes	
15 Apr	Monday	21	Rocky coasts	HW5 due
17 Apr	Wednesday	22	Coastal erosion	
-			and structures	
22 Apr	Monday	23	Storm impacts	HW6 assigned
			- river/estuary	
24 Apr	Wednesday	24	Storm impacts -	
-			coastal	
29 Apr	Monday	25	Human impacts	HW6 due
-			and climate	
			change	
1 May	Wednesday	26	Integrating	
-			research	
			approaches	
6 May	Monday	27	Student	
			presentations	
8 May	Wednesday		Student	
			presentations	
13 May	Monday		Student	Final assigned
			presentations	
20 May	Wednesday			FINAL DUE

Required textbooks, reading and/or software or computer needs

NA; discussion papers will be assigned throughout the course

Course Communication and Resources

We will be using Moodle (http://moodle.cbl.umces.edu) extensively this semester. All course materials, including homework and exams, will be administered through the website. Handouts with slides will be posted the morning of each day's class; please have these available during class.

Instructors are generally available by e-mail, phone, and in-person during normal working hours; advance notice is appreciated but not required.

Campus Policies

The University of Maryland Center for Environmental Science has drafted and approved of various academic and research-related policies by which all students and faculty must abide.

Please visit http://www.umces.edu/consolidated-usm-and-umces-policies-and-procedures for a full list of campus-wide academic policies.

Course-Specific Policies and Expectations

NA